Part 3

NON-MENDELIAN INHERITANCE

Incomplete Dominance

Co-dominance

Multiple allelism

Polygenic inheritance

Pleiotropy

1. INCOMPLETE DOMINANCE

- It is the inheritance in which the offspring shows intermediate character between two parental characteristics.
- E.g. Flower colour in snapdragon (dog flower or Antirrhinum sp.) and Mirabilis jalapa (4'O clock plant).
- Here, cross between homozygous red & white produces pink flowered plant.

1. INCOMPLETE DOMINANCE

Phenotypic ratio= 1:2:1 (1 Red: 2 Pink: 1 White)

Genotypic ratio = 1:2:1 (1 RR: 2 Rr: 1 rr)

Thus phenotypic and genotypic ratios are same.

- This means that R was not completely dominant over r.
- Pea plants also show incomplete dominance in other traits.

2. CO-DOMINANCE

- It is the inheritance in which both alleles of a gene are expressed in a hybrid.
- E.g. ABO blood grouping in human.
 - ABO blood groups are controlled by the gene I.
 - It controls the production of sugar polymers (antigens) that protrude from plasma membrane of RBC.
 - The gene I has three alleles I^A, I^B & i.
 - I^A & I^B produce a slightly different form of the sugar.
 - Allele i doesn't produce any sugar.

2. CO-DOMINANCE

Genotypes of different blood groups

Blood sample	Anti-A	Anti-B	Anti-D	Blood type
	100		. K. 9	A
0		22.	1.4	В
				AB
				0

hankofhiology com						
Genotype						
I ^A I ^A or I ^A i						
I ^B I ^B or I ^B i						
I AIB						
ii Ballaanu aana						

2. CO-DOMINANCE

Antigen B

Blood Type B

Neither antigen A nor B

Blood Type O

Alleles from parent 1	Alleles from parent 2	Genotype of offspring	Blood types (phenotype)	Antigen A	
ΙA	I ^A	I _A I _A	A		K
ĮΑ	i	I ^A i	A		
I B	I _B	I _B I _B	В	Blood Type A	
I ^B	i	I ^B i	В	Antigen A and B	o j
I ^A	I _B	IA IB	AB	91949	
I ^B	I ^A	IA IB	AB		
i	i	ii	0	Blood Type AB	L

When I^A and I^B are present together, they both express their own types of sugars.

This is due to co-dominance.

2. CO-DOMINANCE

Examples

Father x Mother IAi X IBi

Father Mother IA I IBI

i I^Ai ii

Offspring are
A group (I^Ai)
B group (I^Bi)
AB group (I^AI^B)
O group (ii)

Offspring are A group (I^Ai) B group (I^Bi)

Mother **Father** IAIB **Father** IA Mother IAi

3. MULTIPLE ALLELISM

- It is the presence of more than two alleles of a gene to govern same character.
- E.g. Alleles of ABO blood grouping (3 alleles: I^A, I^B & i).
- In an individual, only two alleles are present.
- Multiple alleles can be found only in a population.

IB i

Ĭ

4. POLYGENIC INHERITANCE

- It is the inheritance in which some traits are controlled by several genes (multiple genes).
 b a n k o f b i o l o g y . c o m
- E.g. human skin colour, human height etc.
- It considers the influence of environment.
- In a polygenic trait, phenotype reflects the contribution of each allele, i.e., the
 effect of each allele is additive.

4. POLYGENIC INHERITANCE

Human skin colour

- Assume that 3 genes A, B, C control human skin colour.
- Dominant forms A, B & C responsible for dark skin colour.
- Recessive forms a, b & c for light skin colour.

4. POLYGENIC INHERITANCE

Human skin colour

- Genotype with all the dominant alleles (AABBCC) gives darkest skin colour.
- Genotype with all the recessive alleles (aabbcc) gives lightest skin colour.
- Genotype with 3 dominant + 3 recessive alleles gives intermediate skin colour.

Thus, number of each type of alleles in the genotype determine the darkness or lightness of the skin.

5. PLEIOTROPY

- Here, a single gene exhibits multiple phenotypic expressions. Such a gene is called pleiotropic gene.
- In most cases, mechanism of pleiotropy is the effect of a gene on metabolic pathways which contributes towards different phenotypes.
- E.g. Starch synthesis in pea, phenylketonuria, sickle cell anaemia etc.

In Phenylketonuria & sickle cell anaemia, the mutant gene has many phenotypic effects. E.g. Phenylketonuria causes mental retardation, reduction in hair and skin pigmentation.

5. PLEIOTROPY

Starch synthesis in pea plant

- Starch is synthesized effectively by BB gene. Therefore, large starch grains are produced.
- bb have lesser efficiency in starch synthesis and produce smaller starch grains.
- Starch grain size also shows incomplete dominance.

Why did Mendel's work remain unrecognized?

- Communication was not easy.
- His mathematical approach was new and unacceptable.
- ➤ The concept of genes (factors) as stable & discrete units could not explain the continuous variation.
- He could not give physical proof for the existence of factors.

Mendel's words

"Meine zeit wird schon kommen" (My time will yet come)

20 Jul 1822 - 6 Jan 1884

Hugo de Vries (1848-1935)

Carl Correns (1864-1933)

Erich von Tschermak (1871-1962)

In 1900, de Vries, Correns & von
Tschermak independently rediscovered
Mendel's results.

- Proposed by Walter Sutton & Theodore Boveri (1902).
- They said that the pairing and separation of a pair of chromosomes lead to segregation of a pair of factors they carried.
- Sutton united chromosomal segregation with Mendelian principles and called it the chromosomal theory of inheritance.

Important statements

- Chromosomes are vehicles of heredity.
- ✓ Two identical chromosomes form a homologous pair.

From mother

From father

Important statements

- Chromosomes are vehicles of heredity.
- ✓ Two identical chromosomes form a homologous pair.
- ✓ Homologous pair segregate during gamete formation.

Important statements

- Chromosomes are vehicles of heredity.
- ✓ Two identical chromosomes form a homologous pair.
- ✓ Homologous pair segregate during gamete formation.
- ✓ Independent pairs segregate independently.

Genes are present on chromosomes. Hence they show similar behaviours.

Thomas Hunt Morgan worked with the fruit files (*Drosophila melanogaster*) to prove chromosomal theory of inheritance.

Drosophila is a suitable material for genetic study because,

- ✓ They can grow on simple synthetic medium.
- ✓ Short generation time (life cycle: 12-14 days).
- Breeding can be done throughout the year.
- Hundreds of progenies per mating.

- ✓ Male & female flies are easily distinguishable. E.g. Male is smaller than female.
- ✓ It has many types of hereditary variations that can be seen with low power microscopes.

- Linkage is the physical association of 2 or more genes on a chromosome.
- Linked genes do not show independent assortment.
- Recombination is the generation of non-parental gene combinations.
- Recombination occurs due to independent assortment or crossing over.

Morgan carried out several dihybrid crosses in Drosophila to study sex-linked genes. E.g.

Cross 1

Yellow-bodied, white-eyed females (yyww)

X

Brown-bodied, red-eyed males (wild type, y+y+w+w+)

Cross 2

White-eyed, miniature winged (wwmm)

X

Red eyed, large winged (wild type, w'w'm'm')

Major findings of Morgan's experiment

bankofbiology.com

- ✓ The two genes did not segregate independently and the F2 ratio deviated from the 9:3:3:1 ratio.
- Genes were located on X chromosome.
- ✓ When two genes were situated on same chromosome, proportion of parental gene combinations was much higher than the non-parental type. This is due linkage.

Major findings of Morgan's experiment

- ✓ Genes of white eye & yellow body were very tightly linked and showed only 1.3% recombination.
- ✓ Genes of white eye & miniature wing were loosely linked and showed 37.2% recombination.
- ✓ Tightly linked genes show low recombination. Loosely linked genes show high recombination.

- Alfred Sturtevant used the recombination frequency between gene pairs for measuring the distance between genes and 'mapped' their position on the chromosome.
- Genetic maps are used as a starting point in the sequencing of genomes. E.g. Human Genome Project.

